- Провода касаются ветвей дерева, ударит ли током если прикоснуться к дереву, древесина проводит ток?
- Электропроводность древесины
- Что такое проводник и диэлектрик?
- Электропроводность древесины
- электрическая прочность древесины вдоль и поперек волокон
- Провода касаются ветвей дерева, ударит ли током если прикоснуться к дереву, древесина проводит ток?
- Проводят ли ток деревья.
- максимальная величина тангенса угла потерь для сухой древесины
- Электропроводность древесины.
- диэлектрическая проницаемость некоторых материалов
- Проводит ли дерево электрический ток
- Что такое диэлектрик жидкий?
- Проводники и непроводники электричества — урок. Физика, 8 класс.
- Физические свойства диэлектриков
- Введение, которое обычно никто не читает
Провода касаются ветвей дерева, ударит ли током если прикоснуться к дереву, древесина проводит ток?
Провода касаются ветвей дерева, может ли ударить током если прикоснуться к такому дереву?
Вообще древесина проводит электрический ток, или не проводит?
Древесина относится к категории диэлектриков, т.е. в обычном состоянии электрический ток древесина не проводит. Не зря же, в своё время, многие электроинструменты были оборудованы держателями (ручками) из твёрдых сортов древесины — штанги, ручки токоизмерительных клещей, лестницы и пр.
Инструкции по ПТБ рекомендуют использовать в качестве подручных средств сухие доски, бруски, палки — если необходимо отбросить от пострадавшего оборванный электрический провод.
Мокрая древесена может проводить электроток. Хотя и в этом случае, проводником электротока будут являться молекулы воды в составе древесине, а не сама древесина. Обледенелое дерево зимой так же проводит ток, хотя на самом деле электоток проводит корка льда ( теже молекулы воды).
Чем больше влажность древесины, тем меньше её электрическое сопротивление — тем больше вероятность прохождения через неё электротока .
Напряжение в тех самых проводах воздушной линии электропередачи может быть разным.
Сухая древесина не проводит электрический ток.
Другое дело древесина мокрая, она может проводить электрический ток и Вас может ударить током если прикоснётесь к такому дереву во время сильного дождя, или в то время когда выпала обильная роса.
То есть мокрая древесина уже не диэлектрик и током ударить может, судьбу лучше не испытывать не проводить эксперименты с мокрым деревом и электричеством в дождливую погоду.
Далее, если дерево сухое и провода касаются веток, то при сильном ветре провода могут искрить соприкасаясь между собой, сухое дерево может загореться.
Опять же при сильном ветре дерево может упасть и порвать провода, дотрагиваться до оголённых проводов в любую погоду, категорически нельзя, это смертельно опасно.
Ветки деревьев которые соприкасаются с проводами надо удалять и причём не самостоятельно.
Звоните в организацию которой принадлежит та самая линия (Электросети, как вариант).
В правилах ПУЭ чётко нормированно расстояние от деревьев до воздушных линий электропередач.
Вот таблица для ознакомления.
Обратите внимание, это расстояние от линии электропередач до кроны деревьев, а не от проводов до ствола дерева.
Древесина разная, многое (электропроводность) зависит от конкретной породы дерева от напряжения, но в целом чем больше влажность древесины, тем больше вероятность поражения электрическим током.
Вопрос очень спорный и его ответы зависят от конкретной ситуации.
Сама древесина, любая, считается если не полным диэлектриком, так хотя бы очень сильно сопротивляется прохождению через неё тока, но при условии, что влажность древесины будет близка к 0%.
А вот когда влажность древесины растёт, то и способность проводить электрический ток также растёт, и замечательно, что до 30% влажности древесины её проводимость увеличивается, образно говоря в «»геометрической прогрессии», т.е. очень сильно, а вот после рубежа в 30% эта способность растёт очень слабо.
Получается, что сама древесина не проводит электрический ток, а его проводит вода, находящаяся внктри.
Также стоит ответить, что вода внутри древесины может проводить ток в двух положениях:
- при объёмном сопротивлении
- при поверхностном сопротивлении
Это означает, что электрический ток при объёмном будет «течь» внутри, а при поверхностном по наружному слою.
Бояться, что объёмное сопротивление при повышенной влажности передаст ток не стоит, так как древесина в любом случае сопротивляется и чем меньше напряжение тем на меньшее расстояние сможет проникнуть ток в дерево, а вот поверхностное сопротивление может способствовать передачи тока на большом расстоянии.
Именно поверхностной передачи электрического тока и нужно бояться, провода, касающиеся дерева смогут передать ток по поверхности древесины и эта опасность увеличивается в сырую и дождливую, а также тёплую погоду.
Вот посмотрите, как электрический ток проходит по влажной древесине:
Электропроводность древесины
Способность древесины сопротивляться прохождению через неё электрического тока характеризует такое её свойство, как электропроводность.
Электропроводность — это, по другому, способность древесины проводить электрический ток.
Таким образом делаем вывод : чем выше сопротивление древесины, тем меньше(хуже) она проводит ток.
Электропроводность древесины зависит от породы дерева, направления волокон и от влажности образца.
Сухая древесина является почти диэлектриком, т.е. практически не проводит ток. Когда-то из сухого дуба даже делали платы для электрических схем. А корпуса радио и телеприёмников из дерева или из фанеры помнят очень многие люди до сих пор. Да и на плакатах по мерам безопасности всегда был нарисован мужчина, снимающий оголённый электропровод с поражённого током деревянной рейкой.
Существуют понятия поверхностного и объёмного сопротивления. Они характеризуют, соответственно, прохождение тока по поверхности и внутри образца. Эти два вида сопротивления в сумме дают полное сопротивление древесины.
Сопротивление древесины снижается с увеличением влажности. Например, сопротивление сосны при влажности 0% равно 2,3 х 10 15 ом/см , а при влажности 20% — 3 х 10 8 ом/см. А поверхностное сопротивление , например, бука при увеличении влажности с 4,5% до 17% уменьшается с 1,2 х 10 13 до 1 х 10 7 ом.
Опытным образом установлено, что увеличение влажности в границах от 0% до 30% приводит к снижению сопротивления в миллионы, а больше 30% в десятки раз.
Неодинаково сопротивление вдоль и поперёк волокон. Любая древесина проводит электричество вдоль волокон в несколько раз лучше, чем поперёк. Но в абсолютных величинах эта разница не столь уж и существенна.
Увеличение температуры древесины также приводит к снижению её сопротивления и , соответственно, к увеличению электропроводности.
На зависимости электропроводности от влажности основан метод измерения степени влажности древесины электрическим способом, так называемыми электровлагомерами. А с учётом вышесказанного можно объяснить неточность измерений этим способом при влажности пиломатериалов выше 30%.
Что такое проводник и диэлектрик?
Электропроводность древесины
Способность древесины сопротивляться прохождению через неё электрического тока характеризует такое её свойство, как электропроводность. Электропроводность — это, по другому, способность древесины проводить электрический ток.
Таким образом делаем вывод : чем выше сопротивление древесины, тем меньше(хуже) она проводит ток.
Электропроводность древесины зависит от породы дерева, направления волокон и от влажности образца.
Сухая древесина является почти диэлектриком, т.е. практически не проводит ток. Когда-то из сухого дуба даже делали платы для электрических схем. А корпуса радио и телеприёмников из дерева или из фанеры помнят очень многие люди до сих пор. Да и на плакатах по мерам безопасности всегда был нарисован мужчина, снимающий оголённый электропровод с поражённого током деревянной рейкой.
Существуют понятия поверхностного и объёмного сопротивления. Они характеризуют, соответственно, прохождение тока по поверхности и внутри образца. Эти два вида сопротивления в сумме дают полное сопротивление древесины.
Сопротивление древесины снижается с увеличением влажности. Например, сопротивление сосны при влажности 0% равно 2,3 х 10 15 ом/см , а при влажности 20% — 3 х 10 8 ом/см. А поверхностное сопротивление , например, бука при увеличении влажности с 4,5% до 17% уменьшается с 1,2 х 10 13 до 1 х 10 7 ом.
Опытным образом установлено, что увеличение влажности в границах от 0% до 30% приводит к снижению сопротивления в миллионы, а больше 30% в десятки раз.
Неодинаково сопротивление вдоль и поперёк волокон. Любая древесина проводит электричество вдоль волокон в несколько раз лучше, чем поперёк. Но в абсолютных величинах эта разница не столь уж и существенна.
Увеличение температуры древесины также приводит к снижению её сопротивления и , соответственно, к увеличению электропроводности.
На зависимости электропроводности от влажности основан метод измерения степени влажности древесины электрическим способом, так называемыми электровлагомерами. А с учётом вышесказанного можно объяснить неточность измерений этим способом при влажности пиломатериалов выше 30%.
электрическая прочность древесины вдоль и поперек волокон
При влажности древесины сосны 10% получено следующую электрическую прочность в киловольтах на 1 см толщины: вдоль волокон 16,8; в радиальном направлении 59,1; в тангенциальном направлении 77,3 (определение производилось на образцах толщиной 3 мм). Как видим, электрическая прочность древесины вдоль волокон примерно в 3,5 раза меньше, чем поперек волокон; в радиальном направлении прочность меньше, чем в тангенциальном, так как сердцевинные лучи уменьшают пробивное напряжение. Повышение влажности с 8 до 15% (вдвое) снижает электрическую прочность поперек волокон примерно в 3 раза (в среднем для бука, березы и ольхи).
Электрическая прочность (в киловольтах на 1 см толщины) .других материалов следующая: слюды 1500, стекла 300, бакелита 200, парафина 150, трансформаторного масла 100, фарфора 100. С целью повышения электрической прочности древесины и снижения электропроводности при использовании в электропромышленности в качестве изолятора ее пропитывают олифой, трансформаторным маслом, парафином, искусственными смолами; эффективность такой пропитки видна из следующих данных о древесине березы: пропитка олифой увеличивает пробивное напряжение вдоль волокон на 30%, трансформаторным маслом — на 80%, парафином — почти вдвое по сравнению с пробивным напряжением для воздушно-сухой не пропитанной древесины.
Провода касаются ветвей дерева, ударит ли током если прикоснуться к дереву, древесина проводит ток?
Провода касаются ветвей дерева, может ли ударить током если прикоснуться к такому дереву?
Вообще древесина проводит электрический ток, или не проводит?
Древесина относится к категории диэлектриков, т.е. в обычном состоянии электрический ток древесина не проводит. Не зря же, в своё время, многие электроинструменты были оборудованы держателями (ручками) из твёрдых сортов древесины — штанги, ручки токоизмерительных клещей, лестницы и пр.
Инструкции по ПТБ рекомендуют использовать в качестве подручных средств сухие доски, бруски, палки — если необходимо отбросить от пострадавшего оборванный электрический провод.
Мокрая древесена может проводить электроток. Хотя и в этом случае, проводником электротока будут являться молекулы воды в составе древесине, а не сама древесина. Обледенелое дерево зимой так же проводит ток, хотя на самом деле электоток проводит корка льда ( теже молекулы воды).
Чем больше влажность древесины, тем меньше её электрическое сопротивление — тем больше вероятность прохождения через неё электротока .
Напряжение в тех самых проводах воздушной линии электропередачи может быть разным.
Сухая древесина не проводит электрический ток.
Другое дело древесина мокрая, она может проводить электрический ток и Вас может ударить током если прикоснётесь к такому дереву во время сильного дождя, или в то время когда выпала обильная роса.
То есть мокрая древесина уже не диэлектрик и током ударить может, судьбу лучше не испытывать не проводить эксперименты с мокрым деревом и электричеством в дождливую погоду.
Далее, если дерево сухое и провода касаются веток, то при сильном ветре провода могут искрить соприкасаясь между собой, сухое дерево может загореться.
Опять же при сильном ветре дерево может упасть и порвать провода, дотрагиваться до оголённых проводов в любую погоду, категорически нельзя, это смертельно опасно.
Ветки деревьев которые соприкасаются с проводами надо удалять и причём не самостоятельно.
Звоните в организацию которой принадлежит та самая линия (Электросети, как вариант).
В правилах ПУЭ чётко нормированно расстояние от деревьев до воздушных линий электропередач.
Вот таблица для ознакомления.
Обратите внимание, это расстояние от линии электропередач до кроны деревьев, а не от проводов до ствола дерева.
Древесина разная, многое (электропроводность) зависит от конкретной породы дерева от напряжения, но в целом чем больше влажность древесины, тем больше вероятность поражения электрическим током.
Вопрос очень спорный и его ответы зависят от конкретной ситуации.
Сама древесина, любая, считается если не полным диэлектриком, так хотя бы очень сильно сопротивляется прохождению через неё тока, но при условии, что влажность древесины будет близка к 0%.
А вот когда влажность древесины растёт, то и способность проводить электрический ток также растёт, и замечательно, что до 30% влажности древесины её проводимость увеличивается, образно говоря в «»геометрической прогрессии», т.е. очень сильно, а вот после рубежа в 30% эта способность растёт очень слабо.
Получается, что сама древесина не проводит электрический ток, а его проводит вода, находящаяся внктри.
Также стоит ответить, что вода внутри древесины может проводить ток в двух положениях:
- при объёмном сопротивлении
- при поверхностном сопротивлении
Это означает, что электрический ток при объёмном будет «течь» внутри, а при поверхностном по наружному слою.
Бояться, что объёмное сопротивление при повышенной влажности передаст ток не стоит, так как древесина в любом случае сопротивляется и чем меньше напряжение тем на меньшее расстояние сможет проникнуть ток в дерево, а вот поверхностное сопротивление может способствовать передачи тока на большом расстоянии.
Проводят ли ток деревья.
Здравствуйте. Недавно прочёл вещь, которая меня озадачила: https://www.arhen.ru/index.php?option=com_c. iew&id=6506 Там написано: 3). Большую опасность представляют провода воздушных линий, расположенные в кроне деревьев или кустарников или вблизи от них. Не прикасайтесь к таким деревьям и не раскачивайте их, особенно в сырую погоду! Они служат проводником электрического тока.
Это как получается: Идёшь по лесу, и вдруг как от дерева долбанёт током! А если у меня сердце больное, и мне нельзя, что-бы долбало? Это хорошо я, могу провода разглядеть, особенно днём, но кто-то плохо ведь видит.
Скажите пожалуйста, кто-нибудь знает случаи, что-бы кого-нибудь ударило от дерева?
Сообщение отредактировал savelij®
— 10.9.2013, 18:42
с2н5он Просмотр профиля
Группа: Модераторы Сообщений: 21424 Регистрация: 12.7.2009 Из: Вологодская область Пользователь №: 14996
Volt380 Просмотр профиля
Группа: Пользователи Сообщений: 2963 Регистрация: 23.7.2009 Из: Волгодонск Пользователь №: 15076
ScorpionXXX Просмотр профиля
Группа: Пользователи Сообщений: 412 Регистрация: 31.12.2006 Пользователь №: 7989
с2н5он Просмотр профиля
Группа: Модераторы Сообщений: 21424 Регистрация: 12.7.2009 Из: Вологодская область Пользователь №: 14996
haramamburu Просмотр профиля
Группа: Пользователи Сообщений: 4022 Регистрация: 27.9.2009 Из: Дмитров Пользователь №: 15685
ScorpionXXX Просмотр профиля
Группа: Пользователи Сообщений: 412 Регистрация: 31.12.2006 Пользователь №: 7989
Сергей Г Просмотр профиля
Группа: Пользователи Сообщений: 728 Регистрация: 13.2.2013 Пользователь №: 30796
с2н5он Просмотр профиля
Группа: Модераторы Сообщений: 21424 Регистрация: 12.7.2009 Из: Вологодская область Пользователь №: 14996
Roman D Просмотр профиля
Инспектор Бел Амор
Группа: Пользователи Сообщений: 9216 Регистрация: 11.8.2007 Из: Куртенгофъ Пользователь №: 9187
Для напряжения среднего уровня «дерево» и «древесина» — разные вещи. При ненадлежащем содержании воздушной линии
ветви деревьев начинают касаться проводов и начинается так называемая «стрижка», когда в пределах стрелы провеса ВЛ тонкие ветви оказываются одной длины, словно красиво ухоженные садоводами. Но такая красота —
третий
звонок хозяину линии. Если пройти рядом с такой линией в ветренную погоду, всегда услышишь «тр-трр» тока замыкания на землю. Затем начинаются отключения и отгорания проводов. Но по-любому под
такой
линией ходить никому не рекомендую.
Сообщение отредактировал Roman D
— 11.9.2013, 22:02
Сергей Г Просмотр профиля
Группа: Пользователи Сообщений: 728 Регистрация: 13.2.2013 Пользователь №: 30796
максимальная величина тангенса угла потерь для сухой древесины
С увеличением влажности древесины бука тангенс угла потерь вдоль волокон резко растет при малой (3 х 10 2 гц) и большой (10 9 гц) частоте и почти не меняется при частоте 10 6 -10 7 гц.
Путем сравнительного исследования диэлектрических свойств древесины сосны и полученных из нее целлюлозы, лигнина и смолы было установлено, что эти свойства определяются в основном целлюлозой. Нагрев древесины в поле токов высокой частоты находит применение в процессах сушки, пропитки и склеивания.
Электропроводность древесины.
Способность проводить электрический ток характеризует электрическое сопротивление древесины. В общем случае полное сопротивление образца древесины, размещенного между двумя электродами, определяется как результирующее двух сопротивлений: объемного и поверхностного. Объемное сопротивление численно характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное сопротивление определяет препятствие прохождению тока по поверхности образца. Показателями электрического сопротивления служат удельное объемное и поверхностное сопротивление. Первый из названных показателей имеет размерность ом на сантиметр (ом х см) и численно равен сопротивлению при прохождении тока через две противоположные грани кубика размером 1X1X1 см из данного материала (древесины). Второй показатель измеряется в омах и численно равен сопротивлению квадрата любого размера на поверхности образца древесины при подведении тока к электродам, ограничивающим две противоположные стороны этого квадрата. Электропроводность зависит от породы древесины и направления движения тока. В качестве иллюстрации порядка величии объемного и поверхностного сопротивления в табл. 22 приведены некоторые данные.
Таблица 22. Сравнительные данные об удельном объемном и поверхностном сопротивлении древесины.
Порода и направление | Влажность, % | Удельное объемное сопротивление, ом х см | Удельное поверхностное сопротивление, ом |
Береза, вдоль волокон | 8,2 | 4,2 х 1010 | 4,0 х 1011 |
Береза, поперек волокон | 8,0 | 8,6 х 1011 | 2,8 х 1012 |
Бук, вдоль волокон | 9,2 | 1,7 х 109 | 9,4 х 1010 |
Бук, поперек волокон | 8,3 | 1,4 х 1010 | 7,9 х 1010 |
Для характеристики электропроводности наибольшее значение имеет удельное объемное сопротивление. Сопротивление сильно зависит от влажности древесины. С повышением содержания влаги в древесине сопротивление уменьшается. Особенно резкое снижение сопротивления наблюдается при увеличении содержания связанной влаги от абсолютно сухого состояния до предела гигроскопичности. При этом удельное объемное сопротивление уменьшается в миллионы раз. Дальнейшее увеличение влажности вызывает падение сопротивления лишь в десятки раз. Это иллюстрируют данные табл. 24.
Таблица 23. Удельное объемное сопротивление древесины в абсолютно сухом состоянии.
Порода | Удельное объемное сопротивление, ом х см | |
поперек волокон | вдоль волокон | |
Сосна | 2,3 х 1015 | 1,8 х 1015 |
Ель | 7,6 х 1016 | 3,8 х 1016 |
Ясень | 3,3 х 1016 | 3,8 х 1015 |
Граб | 8,0 х 1016 | 1,3 х 1015 |
Клен | 6,6 х 1017 | 3,3 х 1017 |
Береза | 5,1 х 1016 | 2,3 х 1016 |
Ольха | 1,0 х 1017 | 9,6 х 1015 |
Липа | 1,5 х 1016 | 6,4 х 1015 |
Осина | 1,7 х 1016 | 8,0 х 1015 |
Таблица 24. Влияние влажности на электрическое сопротивление древесины.
Порода | Удельное объемное сопротивление (ом х см) поперек волокон при влажности древесины (%) | ||
22 | 100 | ||
Кедр | 2,5 х 1014 | 2,7 х 106 | 1,8 х 105 |
Лиственница | 8,6 х 1013 | 6,6 х 106 | 2,0 х 105 |
Поверхностное сопротивление древесины также существенно снижается с увеличением влажности. Повышение температуры приводит к уменьшению объемного сопротивления древесины. Так, сопротивление древесины лжетсуги при повышении температуры с 22—23° до 44—45° С (примерно вдвое) падает в 2,5 раза, а древесины бука при повышении температуры с 20—21° до 50° С — в 3 раза. При отрицательных температурах объемное сопротивление древесины возрастает. Удельное объемное сопротивление вдоль волокон образцов березы влажностью 76% при температуре 0°С составило 1,2 х 107 ом см, а при охлаждении до температуры —24° С оно оказалось равным 1,02 х 108 ом см. Пропитка древесины минеральными антисептиками (например, хлористым цинком) уменьшает удельное сопротивление, в то время как пропитка креозотом мало отражается на электропроводности. Электропроводность древесины имеет практическое значение тогда, когда она применяется для столбов связи, мачт линий высоковольтных передач, рукояток электроинструментов и т. д. Кроме того, на зависимости электропроводности от влажности древесины основано устройство электрических влагомеров.
диэлектрическая проницаемость некоторых материалов
Материал | Древесина | Диэлектрическая проницаемость | |
Воздух | 1,00 | Ель сухая: вдоль волокон | 3,06 |
в тангенциальном направлении | 1,98 | ||
Парафин | 2,00 | ||
в радиальном направлении | 1,91 | ||
Фарфор | 5,73 | ||
Слюда | 7,1-7,7 | Бук сухой: вдоль волокон | 3,18 |
в тангенциальном направлении | 2,20 | ||
Мрамор | 8,34 | ||
в радиальном направлении | 2,40 | ||
Вода | 80,1 |
Данные для древесины показывают заметное различие между диэлектрической проницаемостью вдоль и поперек волокон; в то же время диэлектрическая проницаемость поперек волокон в радиальном и тангенциальном направлении различается мало. Диэлектрическая проницаемость в поле высокой частоты зависит от частоты тока и влажности древесины. С увеличением частоты тока диэлектрическая проницаемость древесины бука вдоль волокон при влажности от 0 до 12% уменьшается, что особенно заметно для влажности 12%. С увеличением влажности древесины бука диэлектрическая проницаемость вдоль волокон увеличивается, что особенно заметно при меньшей частоте тока.
В поле высокой частоты древесина нагревается; причина нагрева — потери на джоулево тепло внутри диэлектрика, происходящие под влиянием переменного электромагнитного поля. На этот нагрев расходуется часть подводимой энергии, величина которой характеризуется тангенсом угла потерь.
Тангенс угла потерь зависит от направления поля в отношении волокон: вдоль волокон он примерно вдвое больше, чем поперек волокон. Поперек волокон в радиальном и тангенциальном направлении тангенс угла потерь мало различается. Тангенс угла диэлектрических потерь, как и диэлектрическая проницаемость, зависит от частоты тока и влажности древесины. Так, для абсолютно сухой древесины бука тангенс угла потерь вдоль волокон с увеличением частоты сначала увеличивается, достигает максимума при частоте 10 7 гц, после чего начинает снова снижаться. В то же время при влажности 12% тангенс угла потерь с увеличением частоты резко падает, достигает минимума при частоте 10 5 гц, затем так же резко увеличивается.
Проводит ли дерево электрический ток
Способность древесины сопротивляться прохождению через неё электрического тока характеризует такое её свойство, как электропроводность.
Электропроводность — это, по другому, способность древесины проводить электрический ток.
Таким образом делаем вывод : чем выше сопротивление древесины, тем меньше(хуже) она проводит ток.
Электропроводность древесины зависит от породы дерева, направления волокон и от влажности образца.
Сухая древесина является почти диэлектриком, т.е. практически не проводит ток. Когда-то из сухого дуба даже делали платы для электрических схем. А корпуса радио и телеприёмников из дерева или из фанеры помнят очень многие люди до сих пор. Да и на плакатах по мерам безопасности всегда был нарисован мужчина, снимающий оголённый электропровод с поражённого током деревянной рейкой.
Существуют понятия поверхностного и объёмного сопротивления. Они характеризуют, соответственно, прохождение тока по поверхности и внутри образца. Эти два вида сопротивления в сумме дают полное сопротивление древесины.
Сопротивление древесины снижается с увеличением влажности. Например, сопротивление сосны при влажности 0% равно 2,3 х 10 15 ом/см , а при влажности 20% — 3 х 10 8 ом/см. А поверхностное сопротивление , например, бука при увеличении влажности с 4,5% до 17% уменьшается с 1,2 х 10 13 до 1 х 10 7 ом.
Опытным образом установлено, что увеличение влажности в границах от 0% до 30% приводит к снижению сопротивления в миллионы, а больше 30% в десятки раз.
Неодинаково сопротивление вдоль и поперёк волокон. Любая древесина проводит электричество вдоль волокон в несколько раз лучше, чем поперёк. Но в абсолютных величинах эта разница не столь уж и существенна.
Увеличение температуры древесины также приводит к снижению её сопротивления и , соответственно, к увеличению электропроводности.
На зависимости электропроводности от влажности основан метод измерения степени влажности древесины электрическим способом, так называемыми электровлагомерами. А с учётом вышесказанного можно объяснить неточность измерений этим способом при влажности пиломатериалов выше 30%.
При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью. Исходя из всего выше сказанного, все материалы поделились на три группы:
Каждая из групп нашла широкое применение в электротехнике.
Проводники
Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.
Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.
Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.
Полупроводники
Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.
Что такое диэлектрик жидкий?
Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:
Нефтяные масла — являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: высоковольтные воды. — это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.
Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.
И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла — испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.
Проводники и непроводники электричества — урок. Физика, 8 класс.
Электроскоп — это простейший прибор для обнаружения электрических зарядов и приблизительного определения их величины.
Простейший школьный электроскоп изображён на рисунке. В нём металлический стержень (3) с листочками (4) пропущен через пластмассовую пробку (5) (втулку), вставленную в металлический корпус (1). Корпус с обеих сторон закрыт стёклами (2).
Если к положительно заряженному электроскопу поднести тело, заряженное таким же знаком, как электроскоп, то его листочки разойдутся сильнее.
Приближая к электроскопу тело, заряженное противоположным по знаку зарядом, заметим, что угол между листочками электроскопа уменьшится.
Таким образом, заряженный электроскоп позволяет обнаружить, каким зарядом наэлектризовано то или иное тело.
По отклонению листочков электроскопа можно определить также, увеличился или уменьшился его заряд. Чем больше угол, на который разойдутся листочки электроскопа при его электризации, тем сильнее он наэлектризован. Значит, тем больший электрический заряд на нём находится.
Существует ещё один вид электроскопа — электрометр.
В нём вместо лепестков на металлическом стержне укреплена стрелочка. Она, заряжаясь от стержня, отталкивается от него на некоторый угол.
По способности передавать электрические заряды вещества делятся на проводники, полупроводники и непроводники электричества.
Проводниками называют тела, через которые электрические заряды могут переходить от заряженного тела к незаряженному.
Хорошие проводники электричества — это металлы, почва, вода с растворёнными в ней солями, кислотами или щелочами, графит. Тело человека также проводит электричество. Это можно обнаружить на опыте. Дотронемся до заряженного электроскопа рукой. Листочки тотчас опустятся. Заряд с электроскопа уходит по нашему телу через пол комнаты в землю.Из металлов лучшие проводники электричества — серебро, медь, алюминий.
Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному.
Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шёлк, капрон, масла, воздух (газы). Изготовленные из диэлектриков тела называют изоляторами.
Полупроводниками называют тела, которые по способности передавать электрические заряды занимают промежуточное положение между проводниками и диэлектриками.
К полупроводникам относятся кремний, германий, селен и др. У полупроводников способность проводить электрические заряды резко увеличивается при повышении температуры.
При помощи электроскопа (электрометра) можно проверить, является ли данное вещество проводником электричества.
Если прикоснуться данным веществом к стержню заряженного электроскопа (держа его в руках) и его заряд станет равным нулю, то данное вещество является проводником. Если показание не изменится, то данное вещество — диэлектрик.
Необходимо учитывать, что при изменении влажности, например, сухое дерево (диэлектрик) становится влажным. Вода является проводником электричества, поэтому влажное дерево тоже становится проводником.
Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.
Физические свойства диэлектриков
При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.
Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.
Введение, которое обычно никто не читает
ВИДЕО ПО ТЕМЕ: Медь и серебро в современных тепловых расцепителях.
Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла. Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны.
Сразу замечу, что у тех, у кого меньше примесей и будут лучшими. Ну а по металлам как-то вот так распределилось, всего 3 металла:.