Как называется брус работающий на изгиб техническая механика

15. Изгиб прямолинейного бруса. Общие понятия.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты.

Изгиб называется плоским, если плоскость действия момента проходит через главную центральную ось инерции сечения.

Если изгибающий момент Mx является единственным внутренним силовым фактором, то такой изгиб называется чистым. При наличии поперечной силы изгиб называется поперечным.

Брус, работающий при изгибе, называется балкой.

Построение эпюр поперечной силы и изгибающего момента

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для : условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной — в противном случае.

Схематически это правило знаков можно представить в виде:

Изгибающий момент в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для : условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной — в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для в указанном виде, эпюра всегда оказывается построенной со стороны сжатых волокон балки.

16. Типы опор и определение опорных реакций

Реальные узлы крепления элементов конструкции весьма разнообразны, однако в схемах сопротивления материалов их заменяют условными опорами: заделкой и шарнирными опорами

При решении плоской задачи считается, что всякий элемент имеет 3 степени свободы : вращение вокруг точки и 2 линейных перемещения вдоль двух осей). Всякая реакция возникает в местах наложения связей. В случае пространственной системы сил возникают три реакции по направлению трех координатных осей и три реактивных момента (пар сил) относительно этих осей.

Если наложено ограничение на одно из указанных выше перемещений (чаще всего перемещение полагается равным нулю), то в этом направлении возникает реакция опоры: сосредоточенная сила при ограничении линейного перемещения и пара сил при ограничении углового перемещения.

В зависимости от налагаемых ограничений на перемещение тела различают следующие виды опор: заделка,неподвижная шарнирная опора, подвижная шарнирная опора.

Заделка — нет перемещений (жесткое закрепление тела, например, сварка), возникают реакция неизвестной величины и направления R и реактивный момент МR.

Также может быть интересно:  Wood hardener отвердитель древесины

Заделка

Неизвестную реакцию удобно представить в виде ее проекций на оси координат любого направления, например, для плоской системы горизонтальное Rx и вертикальное Ry. Итого: в плоской заделке возникают 3 неизвестные реакции — 2 силы и одна пара сил.

Неподвижная шарнирная опора — возможно вращение вокруг опоры, линейных перемещений нет, поэтому возникает реакция неизвестной величины и направленияR, которую заменяют ее проекциями на оси координат. Для плоской системы возникают 2 неизвестные реакции: Rx и Ry.

Подвижная шарнирная опора — связь наложена только в одном направлении, т.е возможно вращение вокруг опоры и перемещение вдоль одной из осей. В подвижной шарнирной опоре возникает только одна реакция R — сила в направлении ограничения движения ( перпендикулярно направлению движения вдоль оси).

В зависимости от вида опор различают следующие типы балок:

Консоль – один конец жестко защемлен, второй свободен.

Простая (двух опорная) балка – по обоим концам шарнирные опоры.

Консольная (двух опорная) балка – простая балка с консольными частями.

Составная балка – составленная из двух или более простых, консольных балок и консолей.

Для определения опорной реакции балки, свободно лежащей на обеих опорах, берут сумму моментов от всех нагрузок, действующих на данную балку, относительно второй опоры, и делят эту сумму моментов на длину пролета. Реакцию на другой опоре возможно, определить так же, как разность между суммой всей нагрузки в пролете и ранее вычисленной реакцией на первой опоре. Для вычисления моментов от сплошной нагрузки, распределенной равномерно на участке длины пролета или в виде треугольника, трапеции и т. п., последняя заменяется равной по величине сосредоточенной силой, приложенной в центре тяжести заменяемой сплошной нагрузки.

Для определения изгибающего момента в каком-либо сечении балки необходимо вычислить относительно этого сечения сумму моментов всех сил, расположенных на балке справа или слева от рассматриваемого сечения.

Для определения перерезывающей силы в каком-либо сечении балки необходимо взять сумму проекций всех сил, расположенных справа или слева от рассматриваемого сечения, на ось, перпендикулярную балке в данном сечении.

Источник

Изгиб.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Также может быть интересно:  Как снять обшивку задней двери хендай солярис 2012

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией, параллельной базе эпюре, а эпюра М — наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок, равный значению этой силы, а на эпюре М —точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок, равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М — по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение Mmax или Mmin (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс — статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Далее по полученному значению [Mx] определяют допускаемые значения внешних поперечных нагрузок [Q] и внешних изгибающих моментов [Mвнеш]. Условие прочности имеет вид:

Также может быть интересно:  Как работает газлифт на мебель

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие — на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y — перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения — угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина.

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов Мf от приложенной нагрузки и М1 — от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где Af – площадь эпюры изгибающего момента Мf от заданной нагрузки; yc – ордината эпюры от единичной нагрузки под центром тяжести эпюры Мf ; EIx – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (Af*yc) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра Мf должна быть разбита на простые фигуры(применяется так называемое «расслоение эпюры»), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Источник

Деревология
Adblock
detector